

PHOTOCATALYTIC EFFICIENCY OF N-TIO₂ APPLIED ON COTTON KNIT – PART 2

DUMITRESCU Iuliana¹, VARZARU Elena¹, IORDACHE George-Ovidiu¹, MITRAN Elena-Cornelia¹, CIOROBITCA Maria²

¹National R&D Institute for Textiles and Leather Bucharest (INCDTP) 16 Lucretiu Patrascanu, 030508, Bucharest, Romania, E-mail: <u>certex@ns.certex.ro</u>

² "Gheorghe Asachi" Technical University of Iaşi, Faculty of Textiles & Leather Engineering and Industrial Management, Postal address, 700305, Iaşi, Romania, E-mail: <u>maria_corobitca@yahoo.com</u>

Corresponding author: Dumitrescu, Iuliana, E-mail: iuliana.dumitrescu@gmail.com

Abstract: The objective of this work was to demonstrate the treatment durability at washing of N-TiO₂ layers applied on cotton fabrics by padding and to investigate the particle adherence and morphology of the textile surface. After 5 washing cycles, the cotton fibers are covered with a high number of particles, which demonstrate that the particle adherence to the substrate is high, most of them being present as large clusters. Also, the washing process does not affect in an important manner the polymer layer, only from place to place the cotton knit beeing disrupted. To evaluate the photocatalytic effect of the materials after washing treatment, samples were exposed to ultraviolet and visible light. The trichromatic coordinates of the exposed and non-exposed samples were measured on Hunterlab spectrophotometer. The contradictories values are determined by the non-uniformities of the materials which don't allowed a uniform dyeing of the fabrics. The obtained results showed that after 5 washings, the particles adherence to the substrate is still high and the photocatalytic effects are not significantly impaired. The photocatalytic efficiency of cotton knit treated with N-TiO₂ nanoparticles is higher under visible light than under UV light demonstrating the extension of the TiO₂ absorption in the visible range.

Key words: nitrogen-doped TiO₂, photocatalysis, textiles, washing durability, nanoparticles

1. INTRODUCTION

Majority of the researches evaluate the photocatalytic effects of N-TiO₂ on the pollutants solutions [13-15] and none on the N-TiO₂ immobilized on textiles. Even the photodegradation efficiency in liquids is high, the results could be unreliable if the photocatalyst is fixed on solid substrates which acts as a barrier limiting the mass transport of pollutants to reduced surface of the adsorption sites. In addition, due to non-uniformity of the textile surfaces and the traditional methods used in the textile industry [16,17], the immobilized photocatalysts are randomly dispersed as clusters lowering the surface exposed to light. Our study was focused on the analysis of the photocatalytic effects of N-TiO₂ deposited on textile materials under visible, UV and solar light and their durability at washing.

1.1. Photocatalytic effect of the fabrics treated with N-TiO₂

The photocatalytic efficiency of the fabrics treated with N-TiO₂, stained with methylene blue (MB), and exposed to visible, UV and solar light is shown in the Tables 1 - 6.

Time (min)	Blank	1Na	1 Nb	2N	2Nbis	3N bis
0						
120						
360						

Table 1: The aspect of the cotton knit exposed to UV (λ =365 nm) light

Table 2	: Trichromatic	coordinates	of the cotton	n knit treated	with N-TiO ₂ ,	stained with	h MB and	exposed at	UV
				light					

					ugni					
Sample	L*	a*	b*	dL*	da*	db*	dE*	dC	Tone	% Strength SUM
Blank	83.33	-8.85	-8.02	1.67	3.65	3.83	5.55	-5.28	2.50	74.23
1Na	86.05	-11.86	-4.85	3.43	2.63	4.56	6.28	-4.47	2	66.83
1Nb	81.46	-9.62	-6.29	2.23	3.21	6.24	7.36	-6.44	2	79.63
2N	82.64	-7.59	-4.26	-1.90	-0.79	0.12	2.06	0.61	4	124.04
2N bis	85.15	-10.65	-3.35	2.04	3.27	5.13	6.41	-5.13	2	76.84
3N bis	84.71	-11.41	-3.63	0.55	2.80	4.67	5.47	-4.49	2.5	88.14

Under the UV light, except 2N and 3Nbis fabrics, the treated samples are more decolorized than the untreated fabric (blank) as the grades on gray scale demonstrate. The highest lightness difference (dL^* , + = lighter, - = darker than blank) and the lowest % strength SUM is found on sample 1Na, proving that the methylene blue is more intense decolorized on this fabric than on the other materials after the exposure to UV light. What is important to notice is the behavior of sample 2N, which shows the shade darkening, the color being shifted to green (da* negative) and yellow (db* positive) contrary to the rest of fabrics which colors are shifted to red-yellow.

Time	0 min	120 min	180 min	240min	300min
Blank					
1Na					
1 Nb					

Table 3: Aspect of the knit cotton exposed 5hr to solar light

 Table 4: Trichromatic coordinates of the materials treated with N-TiO2 stained with MB and exposed to solar light

Sample	L*	a*	b*	dL*	da*	db*	dE*	dC	tone	% Strength SUM
Blank	85.76	-2.70	-4.15	0.69	1.34	1.51	2.14	-2.01	3.5	93.80
1Na	90.69	-3.78	1.47	3.96	3.21	4.94	7.10	-3.74	2	71.50
1Nb	87.69	-3.77	0.53	3.15	1.37	4.79	5.90	-2.87	2	80.01
2N	88.05	-3.48	-0.11	5.23	3.06	5.03	7.87	-4.83	2	77.73
2Nbis	89.05	-3.25	1.32	3.08	3.04	5.97	7.37	-4.31	2	88.63
3N	91.09	-2.39	2.66	4.49	3.68	4.77	7.52	-2.86	2	55.20
3Nbis	87.44	-3.66	1.31	3.43	3.03	7.33	8.64	-5.11	1.5	104.76

Sun exposure leads to faster degradation of methylene blue on treated materials than on blank sample, the difference being 1.5 tones compared to untreated material exposed to UV light. Degradative action of sunlight is more intense on 1Na on which surface a higher amount of TiO_2 (4.08 wt% TiK) exists than on 1Nb knit (3.73 wt% TiK) as demonstrated by the lightness (dL*) and color differences (dE*) values and confirmed by % Strength Sum. Also, in the case of 2N and 2N bis, 3N and 3Nbis, it is clear that higher amount of N-TiO₂ existing on the 2N material leads to a faster degradation of the dye.

Table 5: Aspect of the cotton knit treated with 2N, 2Nbis, 3N, 3Nbis exposed 4 h to visible light

 Table 6: Trichromatic coordinates of the materials treated with N-TiO2 stained with MB and exposed to 4hs

 visible light

% a* b* dL* dC Sample L* da* db* dE* tone Strength SUM -3.05 Blank 84.16 -5.62 0.68 8.01 4.97 9.45 -8.92 1.5 79.95 1Na 89.13 -4.93 -0.02 10.42 14.04 15.40 23.30 -19.52 1 25.00 1Nb 85.73 -4.58 -3.95 4.18 7.28 7.36 11.16 -10.34 1.5 56.00 -2.92 2N -0.26 1.30 5.14 -6.41 2 92.33 86.48 4.47 6.93 2Nbis -2.53 88.33 2.05 5.68 12.63 10.90 17.63 -14.29 1 48.00 88.72 2.99 9.63 -10.42 3Nbis -3.05 5.51 10.43 15.23 1 61.76

Under UV and visible light, comparing the values of dL^* , dE^* and % TiK (Fig. 1 and 2), it is obvious that, the photocatalytic efficiency increases until TiO₂ concentration reaches an optimum value (4.08 wt% TiK), than decreases as the amount of N-TiO₂ increases. Under the solar light, the photocatalytic effects are higher for high amount of TiO₂ deposited on materials.

1.2. The treatments durability (Resistance to washing)

The morphology of the textile surface (Table 7) and the amount of $N-TiO_2$ (Table 8) remained on the knits after 5 washing cycles were investigated to determine the treatments durability.

After 5 washing cycles, the cotton fibers are covered with a high number of particles, most of them being present as large clusters, which dimensions vary from 145.7nm to 2μ m. The polymer layers are not much affected by washing, only from place to place being disrupted.

Table 8: EDAX spectra of the cotton knit after 5 washing cycles

 Table 9: Elements founds on cotton knit initial and after 5 washings

Ti K, Wt, %	2N	2N bis	3N	3N bis
Initial	11.69	6.42	13.99	7.05
After 5 washings	13.03	5.48	11.90	3.53
Removed, %	+ 10.28	14.64	14.94	49.93

Except the 3N bis cotton knit, the adherence of the particles is very high if we consider the amount found on the fabrics after 5 washings which decreases by 12.57% for 2N, 4.51-6.42% for 2N bis, and 15% for 3N in comparison with the initial fabrics. It seems that addition of Itobinder instead to improve the particle adherence to the textiles surface, remove a large part of them, especially in the case of 3N bis knit (Table 9).

1.3. Photocatalytic evaluation of the N-TiO₂ cotton knit after 5 washing cycles

Blank	2N	2N bis	3N	3N bis

 Table 10: Aspect of the cotton knit after 5 washing cycles and exposed 4 hours to visible light

 Table 11: Trichromatic coordinates of the cotton knit after 5 washing cycles and exposed 4 hours to visible

					ugni					
Material	L*	a*	b*	dL*	da*	db*	dE*	dC	tone	% Strength SUM
Blank	85.52	-2.94	-4.59	1.19	12.27	5.88	13.66	-13.01	1	54.71
2N	76.25	-8.74	-12.28	6.17	10.87	14.85	19.41	-18.40	1	40.46
2Nbis	85.14	-4.10	-3.47	5.91	13.29	14.06	20.23	-19.32	1	44.81
3N	75.06	-9.02	-12.22	4.64	12.03	13.80	18.88	-18.28	1	42.67
3Nbis	85.51	-4.41	-3.42	5.21	11.06	13.24	18.02	-17.15	1	49.93

According to the tones on greyscale, the methylene blue is decolorized on all the materials, including the untreated ones (Tables 10 and 11). If we consider the lightness values (dL^*), the sample 2N shows the most intensive discoloration followed by 2Nbis, 3Nbis and 3N samples. The da* and db* values are positive, meaning that color for all the samples is shifted to longer wavelength (red-yellow). If we consider the color difference values (dE^*) the highest discoloration is shown by sample 2Nbis due to higher values of da* and db*, knowing that the total color difference is calculated using the following formula:

$$\Delta \mathbf{E}^* = [\Delta \mathbf{L}^{*2} + \Delta \mathbf{a}^{*2} + \Delta \mathbf{b}^{*2}]^{1/2}$$

The contradictories values, especially if we take into account the % Strength SUM, are determinate by the non-uniformities of the materials which don't allowed a uniform dyeing of the fabrics and the dependence of the color measurement by a multitude of parameters (surface texture, uniformity, instrumental geometry, dyes shades, etc.)

(1)

	sour ugni									
Material	L*	a*	b*	dL*	da*	db*	dE*	dC	tone	% Strength SUM
Blank	87.72	-2.02	-1.49	3.18	2.19	3.71	5.36	-4.19	2.50	68.80
2N	72.94	-7.01	-9.91	1.41	5.46	9.57	11.11	-10.99	1.50	85.98
2Nbis	87.82	-1.88	0.81	5.51	6.28	9.77	12.86	-10.07	1.00	65.14
3N	73.00	-7.10	-10.39	8.07	7.16	15.95	19.25	-17.37	1.00	50.01
3Nbis	88.33	-2.09	0.85	8.89	7.76	13.20	17.71	-13.54	1.00	44.09

 Table 12: Chromatic coordinates of the cotton knit after 5 washing cycles and exposed 9 hours to natural

 solar light

The values of brightness and % Strength SUM (Table 12) demonstrate that the most intensive discoloration is shown by 3Nbis followed by 3N and 2N bis. The color difference is almost double or triple comparing with blank sample.

Fig. 3: Correlation % TiK -dL* - 5 washings

Based on dL* values, it can be concluded that, except the sample 2N, the efficiency of N- TiO_2 is higher under the solar light than under visible light (Fig. 3).

2. CONCLUSIONS

The obtained results showed that after 5 washings, the particles adherence to the substrate is high and the photocatalytic effects are not significantly impaired. The cotton knit treated with $N-TiO_2$ nanoparticles show an improved photocatalytic effects under visible light.

Acknowledgements

The authors acknowledge the financial support from the UEFISCDI in the frame of programme PN II through the research project No. 87/2014 (CLEANTEX) and EUREKA-EUROSTARS programme through the project 334E /19.12.2013.

We thank Professor KIM SUNG JIN, Kumoh National Institute of Technology, South Korea for N-TiO₂ samples.

REFERENCES

[13] A. Selvaraj, R. Parimiladevi, K.B. Rajesh, "Synthesis of Nitrogen Doped Titanium Dioxide (TiO2) and its Photocatalytic Performance for the Degradation of Indigo Carmine Dye", J. Environ. Nanotechnol. vol. 2, No. 1, pp. 35-41, 2013.

[14] X. Cheng, X. Yu, Z. Xing, J. Wan, "Enhanced Photocatalytic Activity of Nitrogen Doped TiO2 Anatase Nano-Particle under Simulated Sunlight Irradiation", Energy Procedia, 16, 598–605, 2012.

[15] H. Yu, X. Zheng, Z. Yin, F. Tao, B. Fang, K. Hou, "Preparation of nitrogen-doped TiO2 nanoparticle catalyst and its catalytic activity under visible light", Chin. J. Chem. Eng. 15 (6), 802–807, 2007.

[16] I. Dumitrescu, O. G. Iordache, A. Popescu, E. Varzaru, S. Kim, B. Basim, G. Ükelge, *"The photocatalytic effects of textiles treated with TiO₂ and Fe/TiO₂"*, Industria Textila, 241, vol. 66, nr. 5, pp. 297 – 305, 2015.

[17] Lin, L. Method of Making Fabric with Photo-Catalyst. U.S. 2005/0227557 A1, 13 October 2005